View previous topic :: View next topic |
Author |
Message |
immpy
Joined: 06 May 2017 Posts: 573
|
Posted: Wed Dec 08, 2021 7:44 pm Post subject: VH+ 120821 |
|
|
Hello all, enjoy the puzzle.
Code: |
+-------+-------+-------+
| 8 . 2 | 7 5 . | 4 6 . |
| . . 1 | . . . | . 7 . |
| 6 5 . | . . . | . 2 . |
+-------+-------+-------+
| 3 . . | . . 4 | 8 1 . |
| 5 . . | . . 8 | . . . |
| . . . | 3 1 . | . 4 9 |
+-------+-------+-------+
| 9 . . | 6 . . | . . . |
| 7 2 6 | . . . | . 5 . |
| . . . | . . 2 | . . 6 |
+-------+-------+-------+
|
Play this puzzle online at the Daily Sudoku site
cheers...immp |
|
Back to top |
|
|
dongrave
Joined: 06 Mar 2014 Posts: 568
|
Posted: Fri Dec 10, 2021 6:27 pm Post subject: |
|
|
After basics:
Code: | +--------------+---------------+-------------+
| 8 39 2 | 7 5 139 | 4 6 13 |
| 4 39 1 | 289 289 6 | 59 7 358 |
| 6 5 7 | 1489 489 139 | 19 2 138 |
+--------------+---------------+-------------+
| 3 67 9 | 25 267 4 | 8 1 257 |
| 5 1 4 | 29 2679 8 | 26 3 27 |
| 2 67 8 | 3 1 57 | 56 4 9 |
+--------------+---------------+-------------+
| 9 4 35 | 6 37 57 | 12 8 12 |
| 7 2 6 | 189 89 19 | 3 5 4 |
| 1 8 35 | 45 34 2 | 7 9 6 |
+--------------+---------------+-------------+ |
Then I used the following chain: 2*r4c4-(2=9)r5c4-(29=8*)r2c4-(89=1)r8c4-(1=9)r8c6-r1c6=r1c2-(9=3)r2c2-(38*=5)r2c9-(2*5=7)r4c9-(7=6)r4c2-(67=2)r4c5 contradiction => r4c4 <> 2; stte. |
|
Back to top |
|
|
TomC
Joined: 30 Oct 2020 Posts: 358 Location: Wales
|
Posted: Sun Dec 12, 2021 8:58 am Post subject: |
|
|
I had to break this down bit by bit focusing on box 2
First, an almost XY wing of 259 pivot r5c7 gives pincers on 9 in r2c7 and r5c4 to remove the 9 in r2c4
Second, (is it a XYZ?) wing of 289 using the <89> in box 8 removes the 8 from r3c5
Third, now that r3c5= <49> using an XY chain if r3c5=9 then 1-2-6-5-7-5-4 gives r9c4 = 4 and no <4> in box 2
So, r3c5 = 4 |
|
Back to top |
|
|
Clement
Joined: 24 Apr 2006 Posts: 1113 Location: Dar es Salaam Tanzania
|
Posted: Sun Dec 12, 2021 5:22 pm Post subject: VH 120821 |
|
|
Code: |
+-----------------+------------------------+-------------------+
| 8 39 2 | 7 5 139 | 4 6 13 |
| 4 39 1 |b28*9 289 6 | 59 7 c358 |
| 6 5 7 |c1^489 489 e1^39|f19 2 d1^38|
+-----------------+------------------------+-------------------+
| 3 67 9 |b25 267 4 | 8 1 a257 |
| 5 1 4 |b29 2679 8 | 26 3 a27 |
| 2 67 8 | 3 1 57 | 56 4 9 |
+-----------------+------------------------+-------------------+
| 9 4 35 | 6 37 57 | 2-1 8 a12 |
| 7 2 6 |b1*89 89 19 | 3 5 4 |
| 1 8 35 | 45 34 2 | 7 9 6 |
+-----------------+------------------------+-------------------+
|
(1=275)r754c9 – (5=298*1*)r4528c4 – (1^)r3c4,(8)r2c9 = (8-1^3)r3c9 = (3-1^)r3c6 = (1)r3c7 => - 1r7c7; stte |
|
Back to top |
|
|
Mogulmeister
Joined: 03 May 2007 Posts: 1151
|
Posted: Mon Dec 13, 2021 1:59 pm Post subject: |
|
|
Nice solutions all! Very elegant Clement and thanks Immp!
I have an overlapping ALS
Set A = {2,5,6,7} {yellow + pink square}
Set B = {5,6,7} {green + pink square}
Restricted Common is 5
Common Candidate is 6 {red} which is eliminated; stte |
|
Back to top |
|
|
|